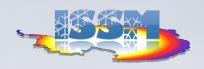
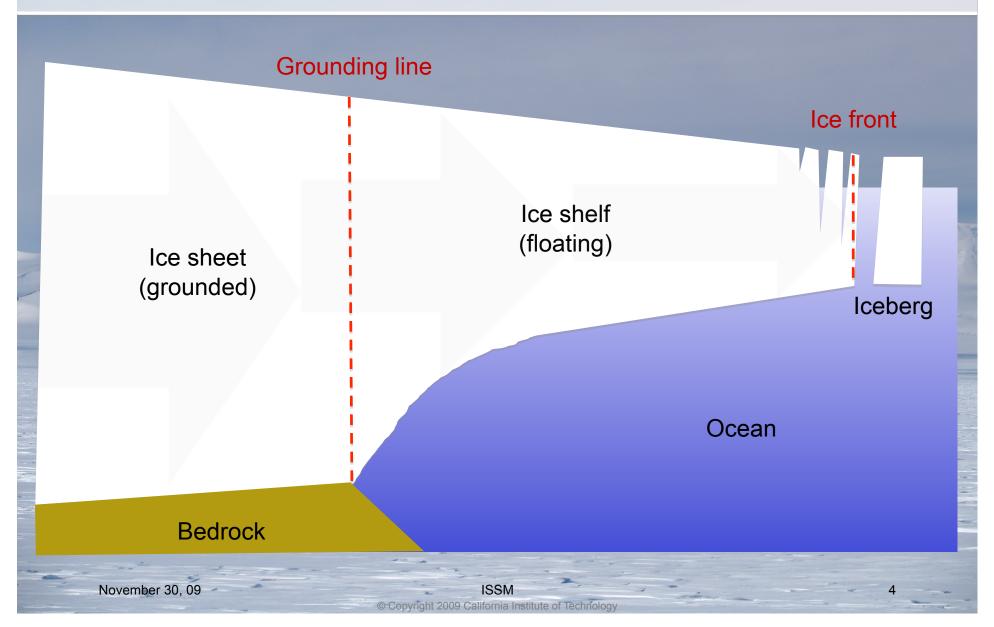


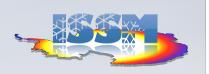
Outline

- 1. Introduction
- 2. Ice sheet modeling
 - Velocity
 - Temperature
 - Mass conservation
- 3. ISSM capabilities
 - Mesh generation
 - Data assimilation
 - Velocities of Antarctica and Greenland
 - Temperatures of Antarctica and Greenland
 - Sensitivity analysis
- 4. Perspectives
 - ISSM ECCO2 coupling




Outline

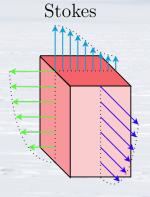

- 2. Ice sheet modeling
 - Velocity
 - Temperature
 - Mass conservation
- 3. ISSM capabilities
 - Mesh generation
 - Data assimilation
 - Velocities of Antarctica and Greenland
 - Temperatures of Antarctica and Greenland
 - Rifts
 - Sensitivity analysis
- 4. Perspectives
 - ISSM ECCO2 coupling



- ISSM: Ice Sheet System Model
- JPL/UCI collaboration to develop large-scale, high-resolution ice-sheet modeling with remote sensing data assimilation
- Hosted in Matlab (ease of use), written in C++ (efficiency), parallelized using Petsc libraries and MPI communications
- Large-scale capability (Antarctica)
- Multi-resolution (~500m ice stream to 100km inland)
- Multi-model (2d, 3d, 2d/3d coupled, full Stokes)
- Team members:
 - Eric Rignot (team manager)
 - Eric Larour (development manager)
 - Hélène Seroussi
 - Mathieu Morlighem



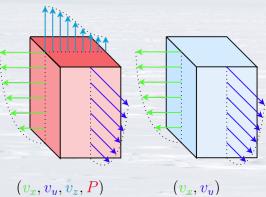
Outline


- 2. Ice sheet modeling
 - Velocity
 - Temperature
 - Mass conservation
- 3. ISSM capabilities
 - Mesh generation
 - Data assimilation
 - Velocities of Antarctica and Greenland
 - Temperatures of Antarctica and Greenland
 - Sensitivity analysis
- 4. Perspectives
 - ISSM ECCO2 coupling


Ice flow model: Stokes

$$\begin{cases}
\frac{\partial}{\partial x} \left(2\mu \frac{\partial \mathbf{v}_x}{\partial x} \right) + \frac{\partial}{\partial y} \left(\mu \frac{\partial \mathbf{v}_x}{\partial y} + \mu \frac{\partial \mathbf{v}_y}{\partial x} \right) + \frac{\partial}{\partial z} \left(\mu \frac{\partial \mathbf{v}_x}{\partial z} + \mu \frac{\partial \mathbf{v}_z}{\partial x} \right) - \frac{\partial P}{\partial x} = 0 \\
\frac{\partial}{\partial x} \left(\mu \frac{\partial \mathbf{v}_x}{\partial y} + \mu \frac{\partial \mathbf{v}_y}{\partial x} \right) + \frac{\partial}{\partial y} \left(2\mu \frac{\partial \mathbf{v}_y}{\partial y} \right) + \frac{\partial}{\partial z} \left(\mu \frac{\partial \mathbf{v}_y}{\partial z} + \mu \frac{\partial \mathbf{v}_z}{\partial y} \right) - \frac{\partial P}{\partial y} = 0 \\
\frac{\partial}{\partial x} \left(\mu \frac{\partial \mathbf{v}_x}{\partial z} + \mu \frac{\partial \mathbf{v}_z}{\partial x} \right) + \frac{\partial}{\partial y} \left(\mu \frac{\partial \mathbf{v}_y}{\partial z} + \mu \frac{\partial \mathbf{v}_z}{\partial y} \right) + \frac{\partial}{\partial z} \left(2\mu \frac{\partial \mathbf{v}_z}{\partial z} \right) - \frac{\partial P}{\partial z} - \rho g = 0 \\
\frac{\partial \mathbf{v}_x}{\partial x} + \frac{\partial \mathbf{v}_y}{\partial y} + \frac{\partial \mathbf{v}_z}{\partial z} = 0
\end{cases}$$

 (v_x, v_u, v_z, P)


Ice flow model: Pattyn

$$\begin{cases}
\frac{\partial}{\partial x} \left(2\mu \frac{\partial \mathbf{v}_x}{\partial x} \right) + \frac{\partial}{\partial y} \left(\mu \frac{\partial \mathbf{v}_x}{\partial y} + \mu \frac{\partial \mathbf{v}_y}{\partial x} \right) + \frac{\partial}{\partial z} \left(\mu \frac{\partial \mathbf{v}_x}{\partial z} + \mu \frac{\partial \mathbf{v}_z}{\partial x} \right) - \frac{\partial P}{\partial x} = 0 \\
\frac{\partial}{\partial x} \left(\mu \frac{\partial \mathbf{v}_x}{\partial y} + \mu \frac{\partial \mathbf{v}_y}{\partial x} \right) + \frac{\partial}{\partial y} \left(2\mu \frac{\partial \mathbf{v}_y}{\partial y} \right) + \frac{\partial}{\partial z} \left(\mu \frac{\partial \mathbf{v}_y}{\partial z} + \mu \frac{\partial \mathbf{v}_z}{\partial y} \right) - \frac{\partial P}{\partial y} = 0 \\
\frac{\partial}{\partial x} \left(\mu \frac{\partial \mathbf{v}_x}{\partial z} + \mu \frac{\partial \mathbf{v}_z}{\partial x} \right) + \frac{\partial}{\partial y} \left(\mu \frac{\partial \mathbf{v}_y}{\partial z} + \mu \frac{\partial \mathbf{v}_z}{\partial y} \right) + \frac{\partial}{\partial z} \left(2\mu \frac{\partial \mathbf{v}_z}{\partial z} \right) - \frac{\partial P}{\partial z} - \rho g = 0
\end{cases}$$

$$\frac{\partial \mathbf{v}_x}{\partial x} + \frac{\partial \mathbf{v}_y}{\partial y} + \frac{\partial \mathbf{v}_z}{\partial z} = 0$$

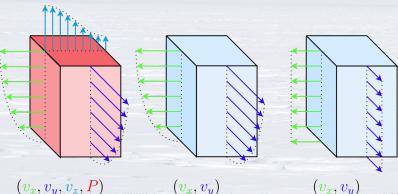
Stokes

Pattyn

November 30, 09

Ice flow model: MacAyeal

$$\left(\frac{\partial}{\partial x} \left(2\mu \frac{\partial \mathbf{v}_x}{\partial x} \right) + \frac{\partial}{\partial y} \left(\mu \frac{\partial \mathbf{v}_x}{\partial y} + \mu \frac{\partial \mathbf{v}_y}{\partial x} \right) + \frac{\partial}{\partial z} \left(\mu \frac{\partial \mathbf{v}_x}{\partial z} + \mu \frac{\partial \mathbf{v}_z}{\partial x} \right) - \frac{\partial P}{\partial x} = 0 \right)$$


$$\frac{\partial}{\partial x} \left(\mu \frac{\partial \mathbf{v}_x}{\partial y} + \mu \frac{\partial \mathbf{v}_y}{\partial x} \right) + \frac{\partial}{\partial y} \left(2\mu \frac{\partial \mathbf{v}_y}{\partial y} \right) + \frac{\partial}{\partial z} \left(\mu \frac{\partial \mathbf{v}_y}{\partial z} + \mu \frac{\partial \mathbf{v}_z}{\partial y} \right) - \frac{\partial P}{\partial y} = 0$$

$$\frac{\partial}{\partial x} \left(\mu \frac{\partial \mathbf{v}_x}{\partial z} + \mu \frac{\partial \mathbf{v}_z}{\partial x} \right) + \frac{\partial}{\partial y} \left(\mu \frac{\partial \mathbf{v}_y}{\partial z} + \mu \frac{\partial \mathbf{v}_z}{\partial y} \right) + \frac{\partial}{\partial z} \left(2\mu \frac{\partial \mathbf{v}_z}{\partial z} \right) - \frac{\partial P}{\partial z} - \rho g = 0$$

$$\frac{\partial \mathbf{v}_x}{\partial x} + \frac{\partial \mathbf{v}_y}{\partial y} + \frac{\partial \mathbf{v}_z}{\partial z} = 0$$

Stokes

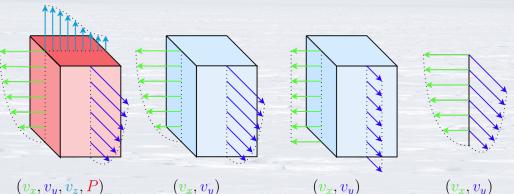
Pattyn MacAyeal

November 30, 09

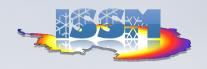
Ice flow model: Hutter

$$\left(\frac{\partial}{\partial x} \left(2\mu \frac{\partial \mathbf{v}_x}{\partial x} \right) + \frac{\partial}{\partial y} \left(\mu \frac{\partial \mathbf{v}_x}{\partial y} + \mu \frac{\partial \mathbf{v}_y}{\partial x} \right) + \frac{\partial}{\partial z} \left(\mu \frac{\partial \mathbf{v}_x}{\partial z} + \mu \frac{\partial \mathbf{v}_z}{\partial x} \right) - \frac{\partial P}{\partial x} = 0 \right)$$

$$\frac{\partial}{\partial x} \left(\mu \frac{\partial \mathbf{v}_x}{\partial y} + \mu \frac{\partial \mathbf{v}_y}{\partial x} \right) + \frac{\partial}{\partial y} \left(2\mu \frac{\partial \mathbf{v}_y}{\partial y} \right) + \frac{\partial}{\partial z} \left(\mu \frac{\partial \mathbf{v}_y}{\partial z} + \mu \frac{\partial \mathbf{v}_z}{\partial y} \right) - \frac{\partial P}{\partial y} = 0$$


$$\left(\frac{\partial}{\partial x} \left(\mu \frac{\partial \mathbf{v}_x}{\partial z} + \mu \frac{\partial \mathbf{v}_z}{\partial x} \right) + \frac{\partial}{\partial y} \left(\mu \frac{\partial \mathbf{v}_y}{\partial z} + \mu \frac{\partial \mathbf{v}_z}{\partial y} \right) + \frac{\partial}{\partial z} \left(2\mu \frac{\partial \mathbf{v}_z}{\partial z} \right) - \frac{\partial P}{\partial z} - \rho g = 0 \right)$$

$$\frac{\partial \mathbf{v}_x'}{\partial x} + \frac{\partial \mathbf{v}_y'}{\partial y} + \frac{\partial \mathbf{v}_z'}{\partial z} = 0$$


Stokes

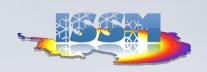
Pattyn MacAyeal

Hutter (SIA)

Thermal regime

- Energy balance:
 - Heat transport: conduction & advection
 - Heat sources: basal friction & deformational heating
- Boundary conditions:
 - imposed surface temperature
 - ocean / geothermal flux

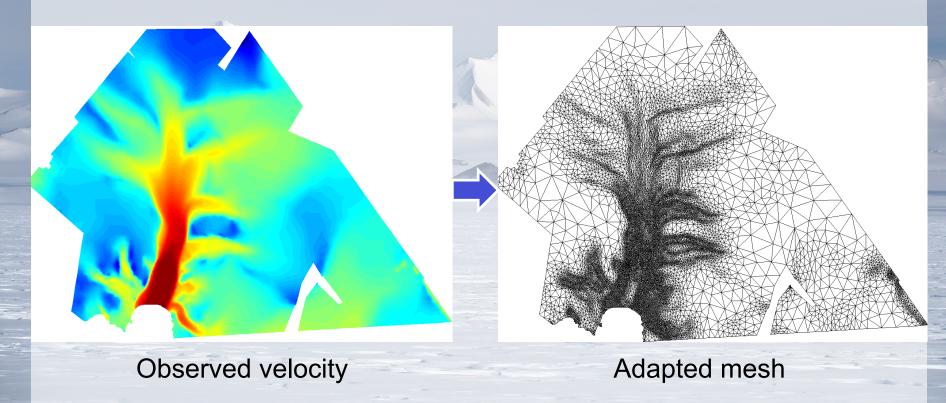
$$\frac{\partial T}{\partial t} = -\left(\boldsymbol{v}_x \frac{\partial T}{\partial x} + \boldsymbol{v}_y \frac{\partial T}{\partial y} + \boldsymbol{v}_z \frac{\partial T}{\partial z}\right) + \frac{k_{th}}{\rho c} \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2}\right) + \frac{\Phi}{\rho c}$$

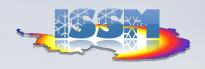

Mass conservation: geometry evolution

- Mass conservation
 - Input
 - Mass influx
 - Surface accumulation
 - Output
 - Mass outflux
 - Bottom melting

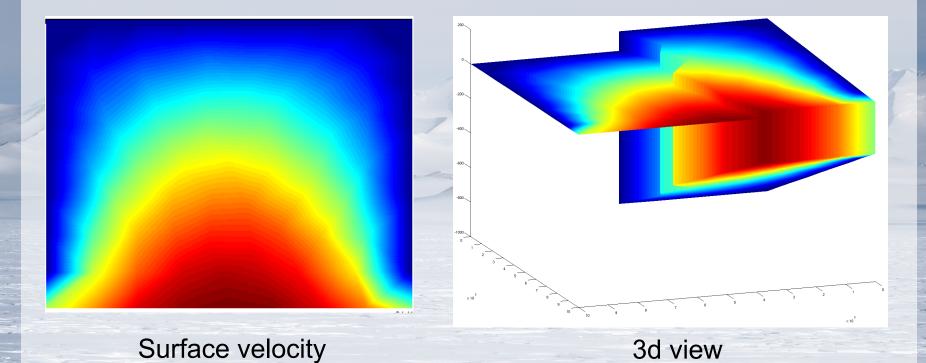
$$\frac{\partial H}{\partial t} = -\operatorname{div}\left(H\begin{bmatrix} \bar{\boldsymbol{v}}_x \\ \bar{\boldsymbol{v}}_y \end{bmatrix}\right) + \dot{M}_s - \dot{M}_b$$

Outline


- 1. Introduction
- 2. Ice sheet modeling
 - Velocity
 - Temperature
 - Mass conservation
- 3. ISSM capabilities
 - Mesh generation
 - Data assimilation
 - Velocities of Antarctica and Greenland
 - Temperatures of Antarctica and Greenland
 - Sensitivity analysis
- 4. Perspectives
 - ISSM ECCO2 coupling

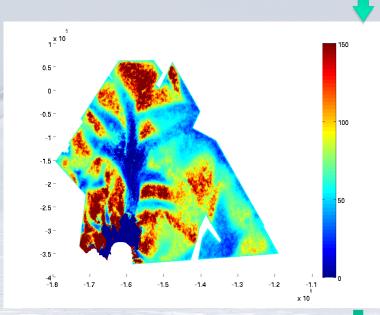

3. ISSM capabilities Mesh generation

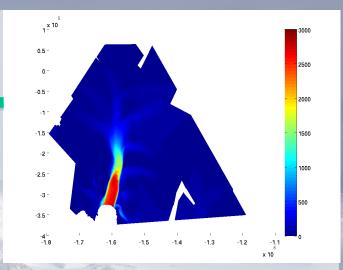
- Finite elements
- Triangular mesh (extruded if 3d)
- Anisotropic mesh adaptation, Yams (INRIA, Pascal Frey)



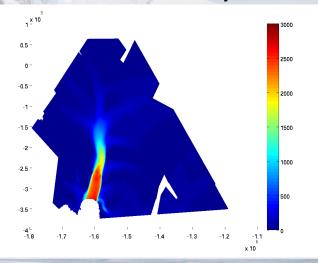
Ice flow models implementation

 Multi-model: different models are connected using Rigid Body Motion connectors, or method of penalties.



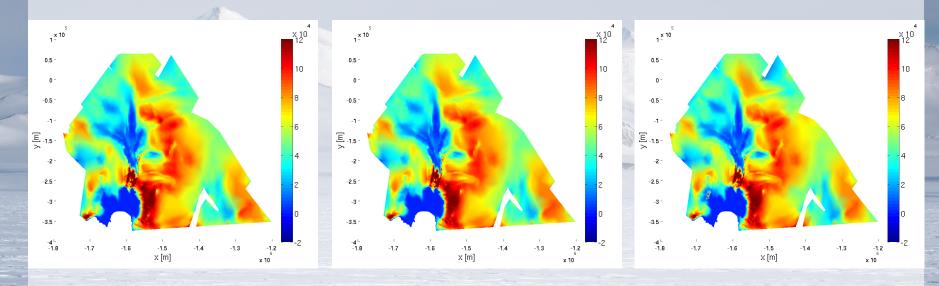

Data assimilation: control methods

Find the spatial pattern of basal drag that minimizes the misfit between the observed and the modeled velocities


$$\overrightarrow{\tau_b} = -\alpha^2 N_{eff}^r \|\overrightarrow{v}\|^{s-1} \overrightarrow{u_b}$$

Drag coefficient α

Observed velocity



Data assimilation: Basin level

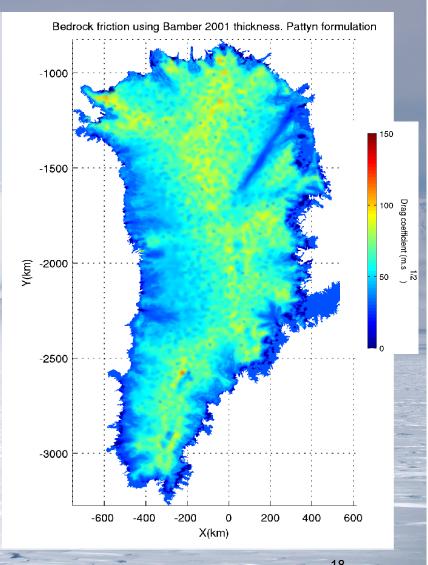
Higher-order data assimilation:

MacAyeal, Pattyn and Stokes formulations at the basin level

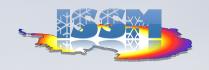
2D MacAyeal Basal drag (kPa)

3D Pattyn Basal drag (kPa)

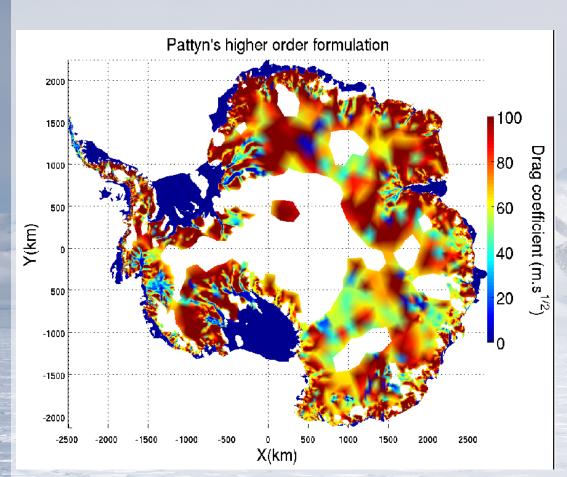
3D Stokes Basal drag (kPa)


Data assimilation: Continental level

Model:


- Data assimilation for basal drag using surface velocity from InSAR (Rignot)
 - + balanced velocities (Bamber 2001)

Run statistics:

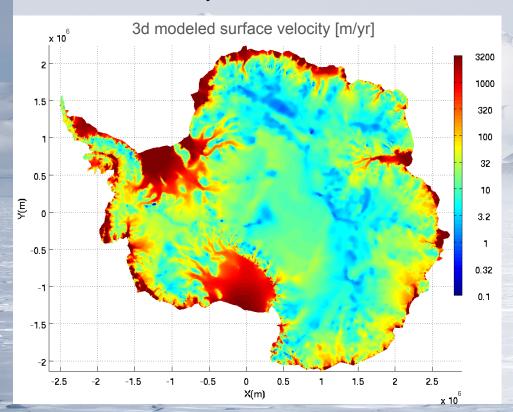

- 128 CPUS cluster, 12 h computation
- 500 m resolution at basins, 10 km inland
- 10 vertical layers

Data assimilation: Continental level


Model:

 Data assimilation for basal drag, using surface velocity from InSAR (Rignot)

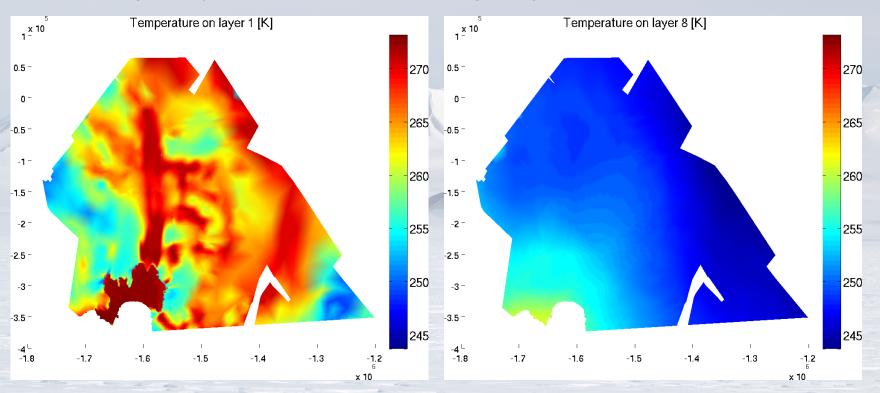
Run statistics:

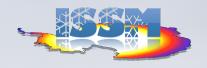

- 128 CPUS cluster
 18 hr computation
- 1.5km resolution at basins
 10 km inland
- 10 vertical layers



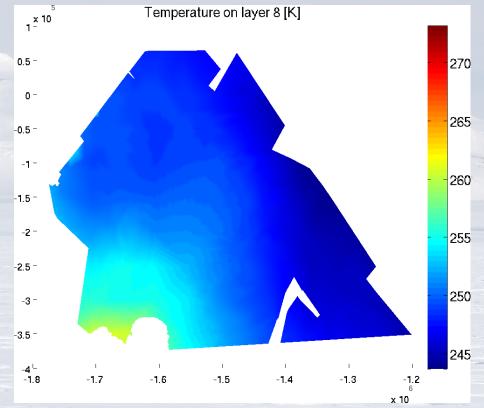

Spatial resolution and geographic coverage

- Large scale capability:
 - 5 million dof on 256 CPU cluster (shared or distributed memory)
 - ~1 km resolution on Antarctica's ice streams
 - < 1km resolution on Greenland basins
 - 10 vertical layers



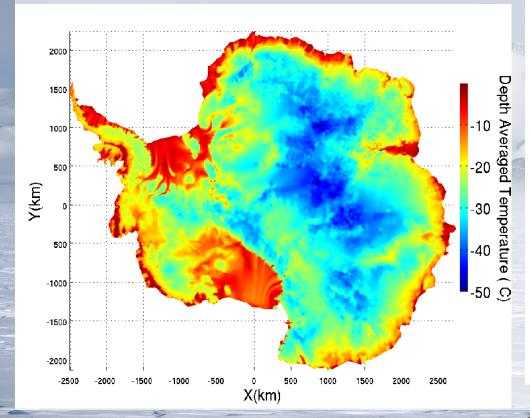

Thermal regime: Basin scale

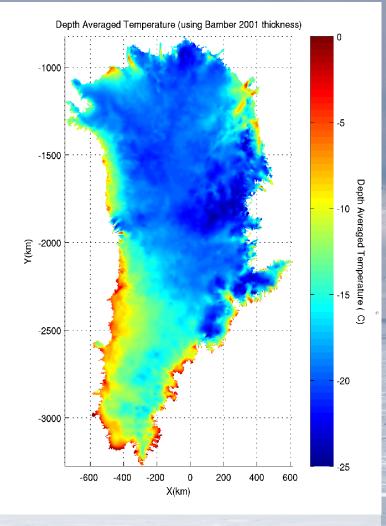
- Thermal regime: steady-state & transient
 - SUPG stabilization
 - Melting is a by-product of thermal modeling using penalties

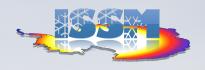

Steady-state temperature of Pine Island Glacier, West Antarctica

Thermal regime: Basin scale

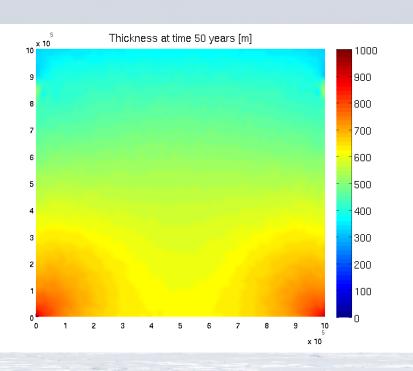
- Thermal regime: steady-state & transient
 - SUPG stabilization
 - Melting is a by-product of thermal modeling using penalties

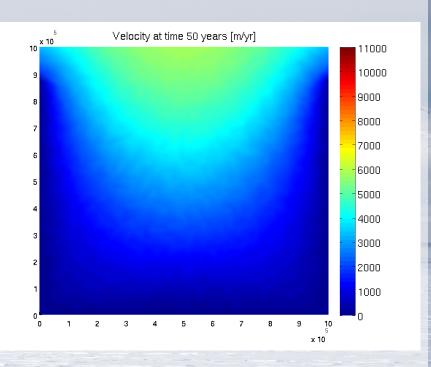

Steady-state temperature of Pine Island Glacier, West Antarctica




Thermal regime: Continental scale

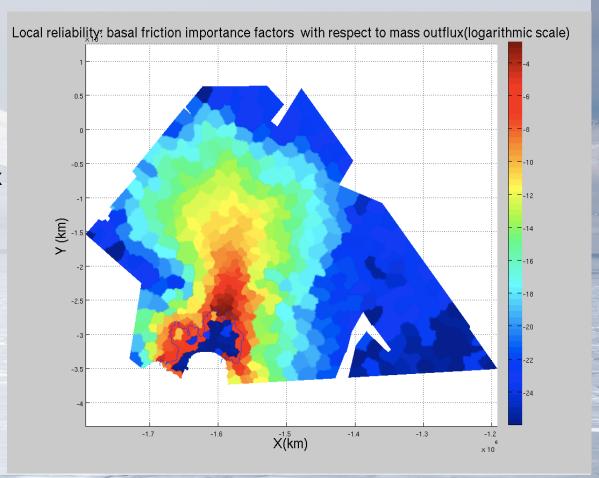
Thermal regime: steady-state of Greenland & Antarctica



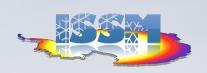


Transient

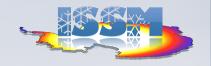

• Simple transient run on a square ice shelf



Sensitivity analysis

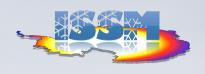


- Dakota in embedded mode (Sandia National Lab)
 - Local reliability methods
 - Monte-Carlo (Latin Hypercube)
 - Parameter studies
 - Optimization
- For a given mass outflux error bar, it gives the spatial distribution of the precision we need for any dataset.

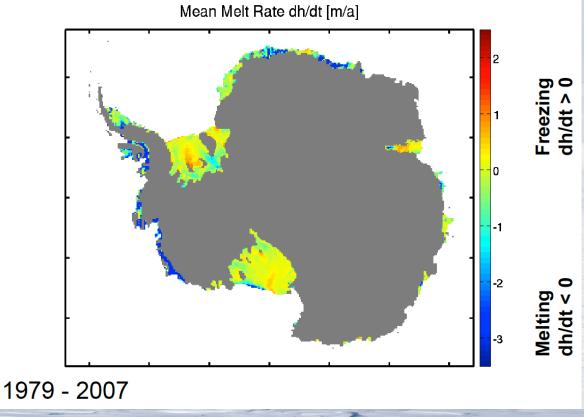

Outline

- 1. Introduction
- 2. Ice sheet modeling
 - Velocity
 - Temperature
 - Mass conservation
- 3. ISSM capabilities
 - Mesh generation
 - Data assimilation
 - Velocities of Antarctica and Greenland
 - Temperatures of Antarctica and Greenland
 - Sensitivity analysis
- 4. Perspectives
 - ISSM ECCO2 coupling

4. Perspectives


Future capabilities and challenges

Future capabilities:


- Moving boundary conditions
- Grounding line dynamics implemented at the 100 m spatial scale
- Calving law
- Hydrological model
- Ice-ocean interactions

4. Perspectives ISSM - ECCO2

- Coupling with ECCO2 framework (using MIT GCM)
 - melting under ice shelf cavities implemented by M. Schodlok, 2005
 - other processes: sub-glacial discharge, submarine melting of calving faces (Rignot et al., 2009)

